
Appendix

A Motion-invariant Loss
The motion-invariant transform ϕ(·), used to compute Linvar in Equation 5, follows the DHB motion-invariant frame-
work [2]. Given trajectories {uk}tk=t−T with T ≥ 2, we compute the relative position pk and orientation rk of the
gripper with respect to the initial frame at t− T , where pt−T and rt−T are at the origin.

The differences ∆pk = pk+1 − pk and ∆rk = rk+1 − rk represent the linear and angular trajectory changes
between k + 1 and k. The initial linear frames are defined as:

x̂p,k =
∆pk

∥∆pk∥
,

ŷp,k =
x̂p,k × x̂p,k+1

∥x̂p,k × x̂p,k+1∥
,

ẑp,k = x̂p,k × ŷp,k.

Similarly, the initial angular frames are:

x̂r,k =
∆rk
∥∆rk∥

,

ŷr,k =
x̂r,k × x̂r,k+1

∥x̂r,k × x̂r,k+1∥
,

ẑr,k = x̂r,k × ŷr,k.

The directions of the axes in both frames are chosen to prevent discontinuities across time steps.
In the DHB transformation, the motion of a rigid body is separated into position and orientation using two frames.

The two invariants are the norms of the relative positions and orientations between frames:

mp,k = ∥∆pk∥,
mr,k = ∥∆rk∥.

These invariants, mp and mr, describe the translation of the linear and angular frames. Four additional values describe
their rotation:

θ1p,k = arctan

(
x̂p,k × x̂p,k+1

x̂p,k · x̂p,k+1
· ŷp,k

)
,

θ2p,k = arctan

(
ŷp,k × ŷp,k+1

ŷp,k · ŷp,k+1
· x̂p,k+1

)
,

θ1r,k = arctan

(
x̂r,k × x̂r,k+1

x̂r,k · x̂r,k+1
· ŷr,k

)
,

θ2r,k = arctan

(
ŷr,k × ŷr,k+1

ŷr,k · ŷr,k+1
· x̂r,k+1

)
.

This process produces the linear and angular invariant values (mp,k, θ
1
p,k, θ

2
p,k) and (mr,k, θ

1
r,k, θ

2
r,k), as established in

the original work.
To ensure continuity, the computed frame rotations are transformed with sin(·) and sin(2·). The final transforma-

tion used in our regularization term is thus:

1



ϕ
(
{uk}tk=t−T

)
=





mp,k

sin(θ1p,k)

sin(2θ1p,k)

sin(θ2p,k)

sin(2θ2p,k)

mr,k

sin(θ1r,k)

sin(2θ1r,k)

sin(θ2r,k)

sin(2θ2r,k)





t−2

k=t−T

,

yielding 10 variables with a length of T − 1. When computing Linvar, we use transformed values from two types of
trajectories: 1) ϕ({ûk}tk=t−T ), the transformed values from the demonstration trajectories, and 2) ϕ(ut, {ûk}t−1

k=t−T ),
the transformed values from the given previous trajectories {ûk}t−1

k=t−T and the predicted target ut at time t. By
calculating the L2 loss between these two transformed values and using it as a training loss, the predicted trajectories
ut are aligned with the demonstration trajectories in the motion-invariant space, given {ûk}t−1

k=t−T .

B Implementation Details
The visuomotor policy πH predicts target poses for the handheld gripper at 10 Hz. The IK optimization πL realizes
these target poses by retargeting them into whole-body motions, updating target joint positions and body orientation at
100 Hz. In simulation, we applied low-level PD control for each joint and body at 500 Hz. For Spot, we additionally
computed joint positions for the legs by solving IK analytically based on the target body pose. For Google, body
motion was controlled similarly to other arm joints with PD control, though using high gains. In real robot setups,
we controlled the robots through APIs provided by the manufacturers. For quantitative evaluation on Panda, we
used JOINT IMPEDANCE mode via Deoxys [3] for joint position control. In the demonstration on Spot, we directly
streamed one-point trajectories for arm joint positions and body pose through Boston Dynamics’ Spot SDK.

C Demonstrations in Simulation
Task demonstrations in simulation use the same tracking camera setup as in real-robot evaluations—a Realsense
T265 [1]. To replicate real-world human demonstration behaviors, visual odometry data from the tracking camera
is mapped to simulated handheld gripper motions in the Abstract embodiment or to IK commands for teleoperated
simulation robots. The button interface for triggering grasp actions and recording data is kept consistent with the real-
world setup. However, unlike real-world demonstrations, simulation does not require physical interaction with the
handheld gripper. Therefore, shared gripper components were removed, and a simplified handle was used to reduce
the workload on the human demonstrators.
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